
Fast and Parallelizable Bayesian Inference

Michael Zhang

Princeton University

Analysis of complex phenomena requires models which carry a substantial computational
burden. Computation is an ever-important problem for statistical inference, particularly for
Bayesian models. Inference in the Bayesian paradigm faces different challenges from the fre-
quentist approach. Whereas under the frequentist ideology, we have to optimize a difficult
objective function, in Bayesian statistics we have to integrate difficult functions. Bayesian
inference therefore requires novel computational techniques when closed form expressions
for calculating posteriors are unavailable. This becomes even more complicated as the di-
mensionality of the parameters and the size of the data grows, as we see in the Bayesian
non-parametric setting with infinite dimension priors.

Bayesian non-parametric based models are an elegant way for discovering underlying
latent features within a data set by assuming parameters are generated from an infinite
dimensional distribution which thereby produces a posterior which is adaptive to the data
at hand. These types of models have proven useful for modeling functions, clustering data,
topic modeling, or learning low dimensional representations of data without having to enforce
strong assumptions on the model (like a strict parametric form of the function or the number
of clusters with which to model data, for example). The Bayesian non-parametric assumption
that we may have infinite dimensional parameters a priori is only reasonable under “big
data” situations, as we cannot assume infinite dimensional parameters if the dataset itself
does not grow as well. However, the computational demands of BNP models quickly become
unfeasible as the size of the data grow. In total, these problems prevent Bayesian and
Bayesian non-parametric methods from being popular models for the applied user.

I have mainly focused on the problem of developing fast and parallel Markov chain Monte
Carlo (MCMC) based computational techniques for Bayesian and Bayesian non-parametric
models in collaboration with my doctoral advisor, Sinead Williamson, at the University of
Texas at Austin. Beyond just developing fundamental techniques to perform fast Bayesian
inference, my research objective is to show that, through developing scalable in-
ference, we are able to apply these flexible models in massive scenarios to make
interesting, novel discoveries. Lastly, I wish to continue pursuing interdisciplinary col-
laborations and substantive applications of scalable inference as part of my research agenda
as a way to inform useful new directions for my work.

1 Advances in Bayesian Inference

1.1 Parallel Inference for Completely Random Measures

Bayesian non-parametric latent variable models have received a lot of interest for their flex-
ibility in modeling data as they allow the practitioner to avoid specifying the exact number
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of topics, clusters or latent factors. MCMC methods for such models typically demands a
trade-off between the speed and quality of inference, depending on whether we decide to
instantiate the infinite mixing measure, π. Inference methods that allow π to be instan-
tiated are inherently parallelizable since the cluster allocation probability is conditionally
independent given the mixing proportion, but proposing new features under this setting is
difficult due to the infinite dimension of the mixing proportion. Integrating out π allows us to
deal only with the cluster allocation, zi, and not the mixing proportion which simplifies the
posterior update. However, the marginal distribution of zi becomes dependent on all other
cluster allocations z−i which is unparallelizable without excessive processor communication.

To overcome this problem, we developed methods in [2, 9] where we parallelize the assign-
ment of the latent variable for non-parametric models in the family of completely random
measures (CRMs), which include the popular Dirichlet process, used in topic modeling and
clustering, and the Indian buffet process, used in sparse factor modeling. We perform infer-
ence by splitting the latent features into a finite dimensional partition for popular instanti-
ated features where we sample feature assignments with an instantiated mixing parameter
and, on one processor, an infinite dimensional partition where we propose and sample new
features according to a collapsed mixing parameter. This solves the problem of proposing
and sampling new features in a parallel setting. This is possible because disjoint subsets
in CRMs are independent thus avoiding the need for excessive, expensive inter-processor
communication.

1.2 Parallel Inference for Gaussian Processes

Gaussian processes (GP) are very popular priors for non-linear regression and classification.
In general, the computational cost of fitting GP models is O(N3), for N observations. Two
broad classes of methods have been proposed to solve this problem: “sparse” methods and
“local” methods. Sparse GPs approximates the posterior distribution via M � N inducing
points which represent pseudo-inputs to a GP model. This thereby reduces the complexity
of fitting the model to O(NM2). Though fast, sparse methods cannot model fast-moving
functions easily since the number of inducing points limits the amount of variation it can cap-
ture. In an example like modeling patient vital signs, we could have millions of observations
with a fast moving latent function which renders sparse methods inappropriate.

Local GP methods partition the data points into K groups, and learn a separate Gaussian
process for each group. This reduces the full covariance matrix into a block diagonal matrix.
Assuming each block is size N/K, inference in the local GP scales approximately O(N3/K2).
The disadvantage of the local methods is that they risk ignoring important correlations
since they assume zero correlation between different blocks. Thus, with either fast Gaussian
process inference method we cannot capture all types of variation and correlations in the
latent function.

Our approach to this problem is an idea that is both scalable and easily distributed [7, 8].
We approximate the covariance matrix with a mixture over block diagonal matrices. In
parallel, we fit multiple independent Gaussian processes to partitions of the data, allowing
us to take advantage of the lower inversion cost. We then use importance sampling to
combine these estimates in a principled manner–the only step in our algorithm requiring
global communication. The resulting posterior predictive distribution has a dense covariance
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matrix, avoiding edge effects common with local methods and allowing for an expressive
covariance structure that can model both long- and short-range non-stationary covariance
behavior.

2 Current Research

2.1 Applications

One direction that I would like to continue as an assistant professor is collaborative research
with the broader scientific community. Previously, I have collaborated with scientists in
biology [4, 5], electrical engineering [3] and operations research [6]. Recently, I have been
working with sociologists at Princeton to improve the computational and memory usage
performance of a particular topic model that is particularly useful to social scientists, the
Structural Topic Model (STM), because it can incorporate covariate information in the
document-topic and the word-topic distributions. Though this topic model can capture
much richer details, it is difficult to apply STM in large-scale situations as we cannot use
typical fast variational inference techniques due to non-conjugate priors in the model.

In addition, I have also been working a on large scale data deduplication problem. The
Eviction Lab at Princeton has collected extensive property ownership records from major US
cities over time and are interested in investigating the claim that the ownership structure
of residential properties in the US is being monopolized over time. However, we have a
complicated merging process because we have temporal dependence in the linkage structure,
for which we lack existing methods. Thus, we are developing deduplication models based on
hierarchical modeling and BNP clustering that are highly scalable as well, considering that
we are analyzing millions of property records.

Another applied research direction that I am pursuing is applications of Gaussian process
modeling for medical data. GP models have proven to be very useful in monitoring patient
health, with examples in jointly modeling patient vital signs and in sepsis detection. We can
extend the fast inference method for non-stationary functions developed in [8] and its online
variant [7], in conjunction with the multi-output GPs to track multiple patient vital signals
in real-time. In particular, we look at real patient data in the MIMIC-III dataset to help
develop our approach. We can further enrich this model by modeling latent force effects, as
we did in [1], to create a toolset of fast and flexible GP models for medical applications and
aid better real-time modeling and decision making in patient health.

3 Conclusion

Bayesian non-parametrics, while attractive on an intuitive level, still faces difficult challenges
especially under the regime of “big data” due to inferential problems especially for MCMC
methods. My hope is that statistical practitioners can use the theoretically appealing prop-
erties of Bayesian non-parametrics in practice, for more complicated problems as a result of
having highly scalable inference methods.
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