Embarrassingly Parallel Inference for Gaussian Processes

Michael Zhang

Acknowledgments

- Collaboration with Sinead Williamson. Online variant with Bianca Dumitrascu, Barbara Engelhardt as well.
- Just released in Journal of Machine Learning Research.
- Code and paper available at michaelzhang01.github.io.

Introduction

- A typical problem in statistics is learning a latent function given noisy observations.
- Learning a general, non-linear function is not a trivial task.
- In the Bayesian context, we can place Gaussian process prior over latent function, P(f)

Gaussian Processes

- Gaussian processes (GP) are distributions over functions.
- A GP-distributed function at any finite set of points is multivariate normal:

$$f|X \sim \mathsf{N}\left(m(X), \Sigma(X, X')\right)$$

Normal property makes GPs convenient to use in statistical models.

Problems with Gaussian Processes

- Problem 1: Inference costs $O(N^3)$.
- Problem 2: Popular kernels are stationary, non-stationary kernels and mixtures are slow to use.
- Solution: Fit mixtures of GPs with Monte Carlo methods.

Sparse Gaussian Process Inference

From Bauer et al., 2016:

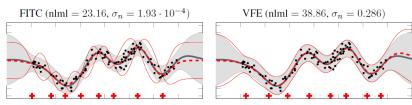
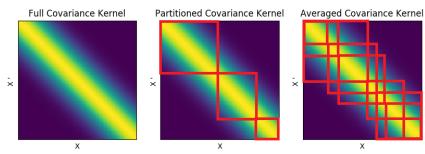


Figure 1: Behaviour of FITC and VFE on a subset of 100 data points of the Snelson dataset for 8 inducing inputs (red crosses indicate inducing inputs; red lines indicate mean and 2σ) compared to the prediction of the full GP in grey. Optimised values for the full GP: nlml = 34.15, $\sigma_n = 0.274$

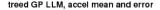
Local Gaussian Process Methods

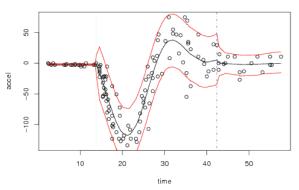
Idea behind partitioning and averaging:



Mixtures of Gaussian Processes

- Averaging over partitioned GPs gives us mixture-of-experts.
- Main benefit: Flexible models. Main drawback: Slow, unparallelizable.
- From Gramacy and Lee, 2008:





Problem Statement

- There are problems in scalable GP inference modeling general types of functions
- Averaging over partitions in local GP methods can solve these problems but is slow.
- We propose a method that averages over partitions quickly.

Importance Sampling

Suppose we are interested in the integral:

$$\bar{f} = \int f(x)p(x) \, \mathrm{d}x$$

but we cannot compute the integral easily.

■ I.e. integrating partition from posterior.

Importance Sampling

 \blacksquare If we have a proposal distribution q(x) we can approximate \bar{f} with:

$$\bar{f} = \int \frac{f(x)p(x)}{q(x)} q(x) dx \approx \frac{1}{J} \sum_{j=1}^{J} f(x^{(j)}) \frac{p(x^{(j)})}{q(x^{(j)})}$$

by drawing J samples from q(x)

Importance Sampled Mixture of Experts

We assume input is GMM:

$$x_i \sim \mathsf{Normal}(\mu_{z_i}, \Gamma_{z_i}), \quad (\mu_k, \Gamma_k) \sim \mathsf{Normal\text{-}Inv.} \ \mathsf{Wishart}(\cdot)$$

$$z_i \sim \mathsf{Categorical}(\pi), \quad \pi \sim \mathsf{Dirichlet}(\alpha)$$

Each proposal for IS is a partition:

$$Z_j \sim P(Z|X,\pi) := q$$

■ We fit *K* separate GP models to the partitioned data.

Importance Sampled Mixture of Experts

■ The IS weights each proposed model according to:

$$w_j \propto \frac{p(Z|X,Y)}{p(Z|X)} \propto \frac{p(X,Y|Z)p(Z)}{p(X|Z)p(Z)} = p(Y|X,Z)$$

- Complexity of IGPS: $O(JN^3/K^2)$, for J importance samples.
- Each proposal is independent—embarrassingly parallel inference

Stochastic Approximation

• We can approximate the full likelihood by sampling a B << N size subset of the data.

$$P(Y|X,Z,f) \approx P(Y^{mb}|X^{mb},Z^{mb},f^{mb})^{\frac{N}{B}}$$

■ With stochastic approximation, complexity is $O(B^3/K^2)$ per importance sample.

Importance Sampled Mixture of Experts

The algorithm:

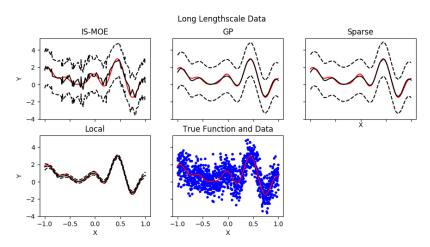
- **1** Generate J partitions with K clusters.
- 2 For each importance sample, fit K independent GP models.
- 3 Predict new data with

$$P(f_j^*|Z_j, -) = \sum_{k=1}^K P(f_j^*|Z_j^*, -)P(Z_j^*|-)$$

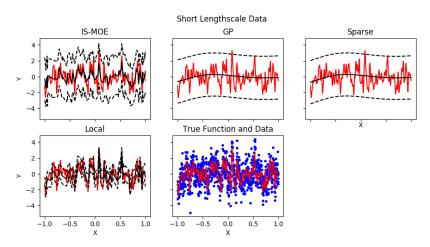
- 4 Obtain weights $w_j = \prod_{k=1}^K P(Y_{k,j}|X_{k,j},Z_j)$ and normalize
- 5 Average using importance weights:

$$P(\bar{f}^*|-) = \sum_{j=1}^{J} w_j P(f_j^*|Z_j, -)$$

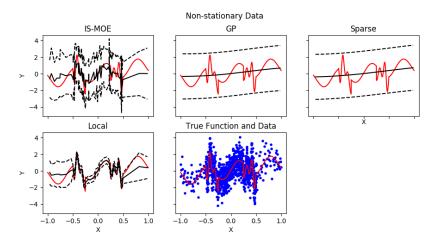
Synthetic data, stationary, long length-scale, $N=1000,\,K=10,\,J=10$



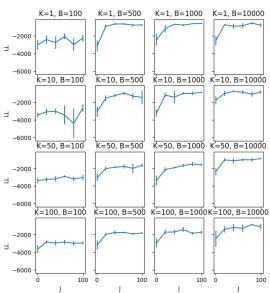
Synthetic data, stationary, short length-scale, $N=1000,\,K=10,\,J=10$



Synthetic data, non-stationary, $N=1000,\,K=10,\,J=10$

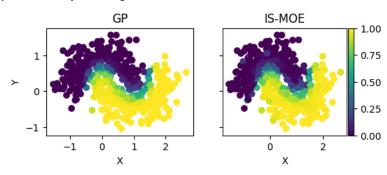


Sensitivity to settings



Classification Results

Applicable beyond regression:



Next Step: Online GPs

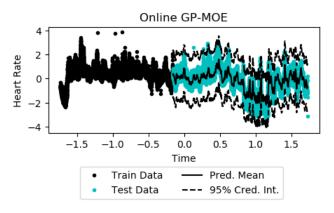
- From "Sequential Gaussian Processes for Online Learning of Nonstationary Functions".
- Importance Sampling → Sequential Monte Carlo
- Update weight:

$$w_j^{(t)} = w_j^{(t-1)} \cdot \frac{P(Y^{(1:t)}|X^{(1:t)}, Z_j^{(1:t)}, \Theta_j)}{P(Y^{(1:t-1)}|X^{(1:t-1)}, Z_j^{(1:t-1)}, \Theta_j)}$$

 \blacksquare Resample particles when ESS < J/2

Heart Rate Dataset

■ From MIMIC-III dataset:



Conclusion

- Code and paper available at michaelzhang01.github.io.
- GPs are nice models but not scalable.
- Our proposed method is more general, inference can be parallelized.
- Future interest in applying to streaming, multi-output GPs and more complicated models.
- Applications: Patient vital sign tracking.

Table: Test set performance on synthetic datasets

Data	IGPS	GP	Sparse	Local
Long Lengthscale Short Lengthscale Non-stationary	-157.16	-143.52 -172.32 -181.40	-172.26	-5207.89 -251.50 -910.54

Timing Results

Table: Predictive log likelihood, MSE and total run time for the non-stationary example, $J=6000\,$

	Log Likelihood	MSE	Wall time (s.)
IS-MOE	-154.79	1.28	61.16
BTGP	-145.71	1.04	1116.75
RBCM	-910.55	1.01	13.08

Timing Results

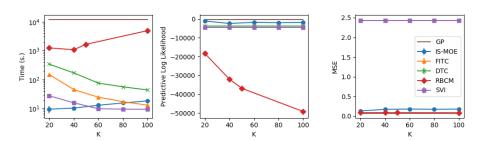


Figure: Wall clock time, predictive log likelihood and MSE results for large synthetic dataset with increasing K. SVI, FITC and DTC obtain very similar predictive performances.

23 / 23

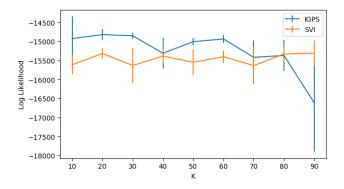
Table: Test set log likelihood and MSE for various weighting schemes. Standard errors are in parentheses

Setting	LL	MSE
IS with SA	-354.96 (28.59)	0.096 (0.003)
IS without SA	-423.93 (41.24)	0.097 (0.002)
Unif. with SA	-726.67 (14.19)	0.19 (0.019)
Unif. without SA	-842.88 (9.82)	0.25 (0.337)

Table: Test set log likelihood and MSE for two different covariate partitioning schemes. Standard errors are in parentheses.

Setting	LL	MSE
GMM	-429.19 (41.57)	,
Random Clusters	-/89.37 (37.43)	0.53 (0.02)

Large air quality dataset, N=209631, J=100, B=1000.



Classification Results

Table: Classification log likelihood results (left) and AUC results (right)

Data	GP	IGPS	Sparse GP	Data	GP	IGPS	Sparse GP
Pima	-128.79	-135.09	-128.61	Pima	0.83	0.81	0.83
Parkinsons	-17.00	-22.76	-28.42	Parkinsons	0.86	0.93	0.88
WDBC	-15.50	-12.62	-18.01	WDBC	0.83	0.91	0.81

Higgs-Boson classification dataset,

N = 1 million, J = 128, B = 1000, K = 20.

